Expand each of the following, using suitable identities : $(x+2 y+4 z)^{2}$
$( x +2 y +4 z )^{2}$
We have $( x + y + z )^{2}= x ^{2}+ y ^{2}+ z ^{2}+2 xy +2 yz +2 zx$
$\therefore \quad( x +2 y +4 z )^{2}=( x )^{2}+(2 y )^{2}+(4 z )^{2}+2( x )(2 y )+2(2 y )(4 z )+2(4 z )( x )$
$= x ^{2}+4 y ^{2}+16 z ^{2}+4 xy +16 yz +8 zx$
Write $(3a + 4b + 5c)^2$ in expanded form.
Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$
Find the remainder obtained on dividing $p(x)=x^3+1$ by $x+1$.
Evaluate the following using suitable identities : $(102)^{3}$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=2 x^{2}+k x+\sqrt{2}$